Projectile motion – problems and solutions

1. A bullet fired at an angle θ = 60o with a velocity of 20 m/s. Acceleration due to gravity is 10 m/s2. What is the time interval to reach the maximum height?

Known :

The initial velocity of bullet (vo) = 20 m/s

Angle (θ) = 60oC

Acceleration due to gravity (g) = 10 m s–2

Wanted : The time interval to reach the maximum height

Solution :

The initial velocity at the horizontal direction (x axis) :

vox = vo cos 60o = (20)(0.5) = 10 m/s

The initial velocity at the vertical direction (y axis) :

voy = vo sin 60o = (20)(0.5√3) = 10√3 m/s

The time interval to reach the maximum height, calculated using this equation :

vty = voy + g t

vty = the final velocity in the vertical direction = the final velocity at the highest point = 0 m/s

voy = the initial velocity at the horizontal direction = 10√3 m/s

g = acceleration due to gravity = 10 m/s2

t = time interval

The time interval :

vty = voy + g t

0 = 10√3 – 10 t

10√3 = 10 t

t = 10√3 / 10

t = √3 seconds

Read :  Electric flux - problems and solutions

2. An object projected at an angle. The height of the object is the same when the time interval = 1 second and 3 seconds. What is the time interval the object in air.

Solution :

Projectile motion – problems and solutions 1

The object in the air for 4 seconds.

3. An aircraft is moving horizontally with a speed of 50 m/s. At the height of 2 km, an object is dropped from the aircraft. Acceleration due to gravity = 10 m/s2, what is the time interval before the object hits the ground.

Known :

Height = 2 km = 2000 metersProjectile motion – problems and solutions 2

Acceleration due to gravity (g) = 10 m/s2

Wanted : The time interval (t)

Solution :

h = 1/2 g t2

2000 = 1/2 (10) t2

2000 = 5 t2

t2 = 2000/5 = 400

t = 400 = 20 seconds

Read :  Rotational dynamics – problems and solutions

4. A kicked football leaves the ground at an angle θ = 45o with the horizontal has an initial speed of 25 m/s. Determine the distance of X. Acceleration due to gravity is 10 m/s2.

Known :Projectile motion – problems and solutions 5

Initial speed (vo) = 25 m/s

Acceleration due to gravity (g) = 10 m/s2

Angle (θ) = 45o

Wanted : X

Solution :

The horizontal component of the initial velocity :

vox = vo cos θ = (25 m/s)(cos 45o) = (25 m/s)(0.52) = 12.52 m/s

The vertical component of the initial velocity :

voy = vo sin θ = (25 m/s)(sin 45o) = (25 m/s)(0.52) = 12.52 m/s

Projectile motion could be understood by analyzing the horizontal and vertical component of the motion separately. The x motion occurs at constant velocity and the y motion occurs at constant acceleration of gravity.

Time in the air (t) :

The time in air calculated with the equation of the upward vertical motion.

Choose upward direction as positive and downward direction as negative.

Known :

The initial velocity (vo) = 12.52 m/s (upward direction, positive)

Acceleration due to gravity (g) = -10 m/s2 (downward direction, negative)

Height (h) = 0

Wanted : Time interval (t)

Solution :

h = vo t + 1/2 g t2

0 = (12.52) t + 1/2 (-10) t2

0 = 12.52 t – 5 t2

12.52 t = 5 t2

12.52 = 5 t

t = 12.52 / 5

t = 2.52 seconds

Read :  Kirchhoff’s first rule – problems and solutions

The horizontal distance (X) :

Calculated using the equation of the uniform linear motion with constant velocity.

Known :

Velocity (v) = 12.52 m/s

Time interval (t) = 2.52 seconds

Wanted : Distance

Solution :

d = v t = (12.52)(2.52) = (12.5)(2.5)(2) = 62.5 meters

5. An object projected upward at an angle θ = 30o with the horizontal has an initial speed of 20 m/s. Acceleration due to gravity is 10 m/s2. Determine the maximum height.

Known :

The initial velocity (vo) = 20 m/sProjectile motion – problems and solutions 6

Acceleration due to gravity (g) = 10 m/s2

Angle (θ) = 30o

Wanted : The maximum height

Solution :

First, find the vertical component of the initial velocity (voy) :

voy = vo sin 30o = (20)(sin 30o) = (20)(0.5) = 10 m/s

Calculate the maximum height. Choose upward direction as positive and downward direction as negative.

Known :

Acceleration due to gravity (g) = -10 m/s2 (downward direction, negative)

The vertical component of the initial velocity (voy) = 10 m/s (upward direction, positive)

Velocity at the maximum height (vty) = 0

Wanted : The maximum height (h)

Solution :

vt2 = vo2 + 2 g h

02 = 102 + 2 (-10) h

0 = 100 – 20 h

100 = 20 h

h = 100/20

h = 5 meters

The maximum height is 5 meters.

6. An object is thrown at a certain elevation angle. The height of the object same after 1 second and 3 seconds. Determine time in air.

A. 3.6 sProjectile motion – problems and solutions 1

B. 4.0 s

C. 5.6 s

D. 6.4 s

Solution

Time in air = 4 seconds.

The correct answer is B.

7. An aircraft is moving horizontally with the speed of 50 m/s. When the aircraft at the height of 2 km, an object free fall from the aircraft. Determine the type of the motion.

A. Free fall motionProjectile motion – problems and solutions 2

B. Floating motion

C. Horizontal motion

D. Projectile motion

Solution :

The object is dropped from the moving plane because it has the same speed as the plane’s speed, that is 50 m/s. Movement of objects is not like free fall motion but parabolic motion. The case is the same as you are dropping objects from inside a moving car.

The correct answer is D.

close

Sign up to receive the free physics ebooks PDF

(Country Code)(Your Whatsapp Number)

We don’t spam! Read our privacy policy for more info.