Isochoric thermodynamics processes – problems and solutions

1. PV diagram below shows an ideal gas

Advertisement
undergoes an isochoric process. Calculate the work is done by the gas in the process AB.

Isochoric thermodynamics processes - problems and solutions 1Solution :

Process AB is an isochoric process (constant volume). The volume is constant so that no work is done by the gas.

.

Read :  Work and kinetic energy – problems and solutions

2. Three moles of monoatomic gas at 47oC and at pressure 2 x 105 Pa, undergoes isochoric process so that pressure increases 3 x 105 Pa. The change in internal energy of the gas is… Universal gas constant (R) = 8.315 J/mol.K

Known :

Initial temperature (T1) = 47oC + 273 = 320 K

Initial pressure (P1) = 2 x 105 Pa

Final pressure (P2) = 3 x 105 Pa

Universal gas constant (R) = 8.315 J/mol.K

Number of moles (n) = 3

Wanted: The change in internal energy of the gas.

Solution :

In the isochoric process, the volume is kept constant so that no work is done by the gas (W = 0).

The first law of thermodynamics :

ΔU = Q-W

ΔU = Q-0

ΔU = Q

ΔU = internal energy, Q = heat

Internal energy of gas :

ΔU = 3/2 n R ΔT = 3/2 n R (T2 – T1)

Gay-Lussac‘s law (constant volume) :

Isochoric thermodynamics processes - problems and solutions 2

The change in internal energy of gas :

ΔU = 3/2 n R (T2 – T1) = 3/2 (3)(8.315)(480-320)

ΔU = 3/2 (24.945)(160) = 3/2 (3991.2)

ΔU = 5986.8 Joule

Read :  Force of gravity and gravitational field - problems and solutions

3. 0.2 moles of monatomic gases at 27oC are in a closed container. The heat

Advertisement
Advertisement
is added to the gas so that temperature of gas becomes 400 K isUniversal gas constant (R) = 8.315 J/mol.K

Known :

Number of moles (n) = 0.2 mol

Initial temperature (T1) = 27oC + 273 = 300 K

Final temperature (T2) = 400 K

Universal constant gas (R) = 8.315 J/mol.K

Wanted : Heat is added (Q)

Solution :

In isochoric process, volume is kept constant so that no work is done by the gas (W = 0).

The first law of thermodynamics :

ΔU = Q-W

ΔU = Q-0

ΔU = Q

ΔU = internal energy, Q = heat

The internal energy of gas :

ΔU = 3/2 n R ΔT = 3/2 n R (T2 – T1)

ΔU = 3/2 (0.2)(8.315)(400-300)

ΔU = 3/2 (0.2)(8.315)(100)

ΔU = 249.45 Joule